On perfect colorings of infinite multipath graphs

Maria Lisitsyna

This is joint work with Olga Parshina

August 15, 2018

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

SECTION 1

PROBLEM STATEMENT

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Lexicographical graph product

Definition

A lexicographical product of graphs G and H is a graph $G \cdot H$ with the following properties:

- $V(G \cdot H) = V(G) \times V(H)$,
- $\{(u_1, u_2), (v_1, v_2)\} \in E(G \cdot H) \Leftrightarrow \{u_1, v_1\} \in E(G) \text{ or } (u_1 = v_1 \text{ and } \{u_2, v_2\} \in E(H)).$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Lexicographical graph product. Example 1

Рис.: $P_2 \cdot \overline{K_3} = K_{3,3}$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Lexicographical graph product. Example 2

Рис.: $P_2 \cdot K_3$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Object of the research

- A graph C_{∞} : $V(C_{\infty}) = \mathbb{Z}, E(C_{\infty}) = \{\{i, i+1\} | i \in \mathbb{Z}\}.$
- $n \in \mathbb{N}$
- A graph $\overline{K_n}$ is an empty graph on *n* vertices and a graph K_n is a complete graph on *n* vertices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• An infinite G-times path is the graph $C_{\infty} \cdot G$.

The infinite multipath graphs. Examples

The infinite $\overline{K_3}$ -times path

The infinite K_3 -times path

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Perfect coloring (equitable partition, partition design)

Definition

• $k \in \mathbb{N}$

- A vertex coloring of a graph G = (V, E) with k colors: $\phi: V \rightarrow \{1, 2, \dots, k\}.$
- If $\phi(v) = s$ then s is the color of v.
- A coloring $\phi(v)$ is called *perfect* with parameter matrix $M = (m_{ij})$ if for each vertex of color *i* the number of adjacent vertices of color *j* is equal to m_{ij} .

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Perfect coloring of the graph $C_{\infty} \cdot \overline{K_3}$. Example

Рис.: Perfect coloring of the graph $C_{\infty} \cdot \overline{K_3}$

$$\begin{pmatrix} 0 & 3 & 3 \\ 3 & 0 & 3 \\ 3 & 3 & 0 \end{pmatrix} = M$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

SECTION 2

DISJUNCTIVE COLORINGS OF THE GRAPHS $C_{\infty} \cdot \overline{K_n}$ AND $C_{\infty} \cdot K_n$

Disjunctive colorings of the graph $G \cdot H$

- A perfect coloring of the graph G: $\psi: V(G) \rightarrow \{1, 2, \dots k\};$
- a set of perfect colorings of the graph H:

$$\begin{split} \Phi &= \{\phi_1, \phi_2, \dots \phi_k\},\\ \phi_s &: V(\mathcal{H}) \to J_s, s \in \{1, 2, \dots k\},\\ J_p \cap J_q &= \varnothing \text{ if } p \neq q. \end{split}$$

- $\bullet \psi \cdot \Phi(\mathbf{v}_1, \mathbf{v}_2) = \phi_{\psi(\mathbf{v}_1)}(\mathbf{v}_2)$
- This design of the graph G · H is called *disjunctive coloring*.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Disjunctive coloring of the graph $C_{\infty} \cdot \overline{K_3}$. Example

Puc.: Disjunctive coloring of the graph $C_{\infty} * \overline{K_3}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

SECTION 3

NONSTANDARD COLORINGS OF THE GRAPHS $C_{\infty} \cdot \overline{K_n}$ and $C_{\infty} \cdot K_n$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三国 - のへで

Perfect colorings of a bipartite graph. Definitions

- The graph $C_{\infty} \cdot \overline{K_n}$ is bipartite.
- Consider a bipartite graph $G(V_1, V_2)$.
- A half-coloring of the graph G is a coloring of vertices of the set V_i (i ∈ {1,2}).
- A perfect coloring $\phi(v)$ of the graph G is called *bipartite* if $\phi(V_1) \cap \phi(V_2) = \emptyset$.
- Otherwise the perfect coloring of the graph *G* is called *nonbipartite*.

If G is connected then $\phi(V_1) = \phi(V_2)$ in nonbipartite case.

Nonstandard bipartite colorings of $C_{\infty} \cdot K_n$

• A result of combination of two arbitrary 2-periodic half--colorings of the graph $C_{\infty} \cdot \overline{K_n}$ with disjoint sets of colors is perfect coloring of it.

Рис.: Nonstandard bipartite coloring of the graph $C_{\infty} \cdot \overline{K_3}$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Nonstandard nonbipartite colorings of the graph $\mathcal{C}_\infty \cdot \mathcal{K}_n$

- 1 We consider a coloring $\phi(v)$ of the graph $C_{\infty} \cdot \overline{K_n}$ with period T of length 4.
- **2** Let *i* be a color of $\phi(v)$.
- *i-characteristic vector b_i* is a vector of length 4, whose components are numbers of *i*-colored vertices in corresponding copies of K_n.
- If the sum of components of the vector b_i with even numbers is equal to the sum of components with odd numbers for every i, the coloring is perfect.
- **5** Such the coloring of the graph $C_{\infty} \cdot \overline{K_n}$ is called *nonstandard nonbipartite*.

Nonstandard nonbipartite coloring of the graph $C_{\infty} \cdot \overline{K_3}$. Example

Nonstandard perfect colorings of the graph $C_\infty \cdot K_n$

• Any 3-periodic coloring of the graph $C_{\infty} \cdot K_n$ is perfect

Puc.: Nonstandard perfect colorings of the graph $C_{\infty} \cdot K_3$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

SECTION 4

RESULTS

Perfect colorings of the graph $C_{\infty} * \overline{K_n}$

Theorem 1

The perfect colorings of the graph $C_{\infty} * \overline{K_n}$ are exhausted by the following list:

1. disjunctive perfect colorings;

2. nonstandard bipartite colorings, that are got by combining two arbitrary 2-periodic half-colorings;

3. nonstandard nonbipartite colorings, that are got by combining two matched 2-periodic half-colorings.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Perfect colorings of the graph $C_{\infty} * K_n$

Theorem 2

The perfect colorings of the graph $C_{\infty} * K_n$ are exhausted by the following list:

- 1. disjunctive perfect colorings;
- 2. nonstandard 3-periodic colorings.

Thank you for your attention!

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?